miércoles, 20 de junio de 2012

Potencia electrica y Ley de Joule

Potencia eléctrica

La energía eléctrica se transmite por líneas sobre torres, como estas en Brisbane, Australia.
La potencia eléctrica es la relación de paso de energía de un flujo por unidad de tiempo; es decir, la cantidad de energía entregada o absorbida por un elemento en un tiempo determinado. La unidad en el Sistema Internacional de Unidades es el vatio (watt).
Cuando una corriente eléctrica fluye en un circuito, puede transferir energía al hacer un trabajo mecánico o termodinámico. Los dispositivos convierten la energía eléctrica de muchas maneras útiles, como calor, luz (lámpara incandescente), movimiento (motor eléctrico), sonido (altavoz) o procesos químicos. La electricidad se puede producir mecánica o químicamente por la generación de energía eléctrica, o también por la transformación de la luz en las células fotoeléctricas. Por último, se puede almacenar químicamente en baterías.

Potencia fluctuante
Al ser la potencia fluctuante de forma senoidal, su valor medio será cero. Para entender mejor qué es la potencia fluctuante, imaginemos un circuito que sólo tuviera una potencia de este tipo. Ello sólo es posible si \phi = \pi/2 , quedando
p(t)= V.I.cos(\pi/2) + V \cdot I \cdot \cos(2 \omega t - \pi/2) = V \cdot I \cdot \cos(2 \omega t - \pi/2)
caso que corresponde a un circuito inductivo puro o capacitivo puro. Por lo tanto la potencia fluctuante es debida a un solenoide o a un condensador. Tales elementos no consumen energía sino que la almacenan en forma de campo magnético y campo eléctrico.

 Componentes de la intensidad

Figura 1.- Componentes activa y reactiva de la intensidad; supuestos inductivo, izquierda y capacitivo, derecha.
Consideremos un circuito de C. A. en el que la corriente y la tensión tienen un desfase φ. Se define componente activa de la intensidad, Ia, a la componente de ésta que está en fase con la tensión, y componente reactiva, Ir, a la que está en cuadratura con ella (véase Figura 1). Sus valores son:
I_a = I \cdot \cos \phi \,\!
I_r = I \cdot \sin \phi \,\!
El producto de la intensidad, I, y las de sus componentes activa, Ia, y reactiva, Ir, por la tensión, V, da como resultado las potencias aparente (S), activa (P) y reactiva (Q), respectivamente:
S = I^* \cdot V \,\!

P = I \cdot V \cdot \cos \phi \,\!
Q = I \cdot V \cdot \sin \phi \,\!

 Potencia aparente

Figura 2.- Relación entre potencia activa, aparente y reactiva.
La potencia compleja de un circuito eléctrico de corriente alterna (cuya magnitud se conoce como potencia aparente y se identifica con la letra S), es la suma (vectorial) de la potencia que disipa dicho circuito y se transforma en calor o trabajo (conocida como potencia promedio, activa o real, que se designa con la letra P y se mide en vatios (W)) y la potencia utilizada para la formación de los campos eléctrico y magnético de sus componentes, que fluctuará entre estos componentes y la fuente de energía (conocida como potencia reactiva, que se identifica con la letra Q y se mide en voltiamperios reactivos (var)). La relación entre todas las potencias aludidas es  S^{2} = P^{2} + Q^{2} .
Esta potencia aparente (S) no es realmente la "útil", salvo cuando el factor de potencia es la unidad (cos φ=1), y señala que la red de alimentación de un circuito no sólo ha de satisfacer la energía consumida por los elementos resistivos, sino que también ha de contarse con la que van a "almacenar" las bobinas y condensadores. Se mide en voltiamperios (VA), aunque para aludir a grandes cantidades de potencia aparente lo más frecuente es utilizar como unidad de medida el kilovoltiamperio (kVA), que se lee como "kavea" o "kaveas".
La fórmula de la potencia aparente es: S = I^* \cdot V \,\!

 Potencia activa

Es la potencia que representa la capacidad de un circuito para realizar un proceso de transformación de la energía eléctrica en trabajo. Los diferentes dispositivos eléctricos existentes convierten la energía eléctrica en otras formas de energía tales como: mecánica, lumínica, térmica, química, etc. Esta potencia es, por lo tanto, la realmente consumida por los circuitos y, en consecuencia, cuando se habla de demanda eléctrica, es esta potencia la que se utiliza para determinar dicha demanda.
Se designa con la letra P y se mide en vatios -watt- (W) o kilovatios -kilowatt- (kW). De acuerdo con su expresión, la ley de Ohm y el triángulo de impedancias:
P = I \cdot V \cdot \cos \phi = I \cdot Z \cdot I \cos \phi = I^2\cdot Z \cdot \cos \phi = I^2\cdot R \,\!
Resultado que indica que la potencia activa es debida a los elementos resistivos.

 Potencia reactiva

Esta potencia no tiene tampoco el carácter realmente de ser consumida y sólo aparecerá cuando existan bobinas o condensadores en los circuitos. La potencia reactiva tiene un valor medio nulo, por lo que no produce trabajo necesario. Por ello que se dice que es una potencia desvatada (no produce vatios), se mide en voltiamperios reactivos (var) y se designa con la letra Q.
A partir de su expresión,
Q = I \cdot V \cdot \sin \phi = I \cdot Z \cdot I \sin \phi = I^2\cdot Z \cdot \sin \phi = I^2\cdot X  = I^2\cdot (X _L - X _C)=S \cdot \sin \phi \,\!
Lo que reafirma en que esta potencia es debida únicamente a los elementos reactivos.
La potencia reactiva en en cargas inductivas(motores de inducción, generadores de corriente alterna, transformadores,etc), es la energía que se necesita para magnetizar el núcleo ferromagnético de dichas cargas.

No hay comentarios:

Publicar un comentario