Potencial eléctrico
El potencial eléctrico en un punto es el trabajo que debe realizar un campo electrostático para mover una carga positiva q desde el punto de referencia, dividido por unidad de carga de prueba. Dicho de otra forma, es el trabajo que debe realizar una fuerza externa para traer una carga unitaria q desde la referencia hasta el punto considerado en contra de la fuerza eléctrica. Matemáticamente se expresa por:
Trabajo eléctrico y energía potencial eléctrica
Considérese una carga puntual
en presencia de un campo eléctrico
cualquiera. La carga experimentará una fuerza eléctrica:
la fuerza eléctrica hará un trabajo diferencial
expresado como:
que recorre una determinada trayectoria A - B en las inmediaciones de una carga
tal y como muestra la figura 1. Siendo
el desplazamiento infinitesimal de la carga
en la dirección radial, el trabajo diferencial
se puede expresar así:
de la carga
y la posición final B, distante
de la carga
:
no depende de la trayectoria seguida por la partícula, sólo depende de la posición inicial y final, lo cual implica que la fuerza eléctrica
es una fuerza conservativa. Por lo tanto se puede definir una energía potencial que permite calcular el trabajo más fácilmente: ) se concluye que el trabajo
Por convención, el nivel cero de energía potencial se suele establecer en el infinito, es decir, si y sólo si
.
Campo eléctrico uniforme
Sean A y B dos puntos situados en un campo eléctrico uniforme, estando A a una distancia d de B en la dirección del campo, tal como muestra la figura.
Considérese una carga de prueba positiva q moviéndose sin aceleración, por efecto de algún agente externo, siguiendo la recta que une A con B.
La fuerza eléctrica sobre la carga será qE y apunta hacia abajo. Para mover la carga en la forma descrita arriba, se debe contrarrestar esa fuerza aplicando una fuerza externa F de la misma magnitud pero dirigida hacia arriba. El trabajo
realizado por el agente que proporciona esta fuerza es:

Teniendo en cuenta que:

sustituyendo eso que esta mal se obtiene:

Esta ecuación muestra la relación entre la diferencia de potencial y la intensidad de campo en un caso sencillo especial.
El punto B tiene un potencial más elevado que el A. Esto es razonable porque un agente exterior tendría que hacer trabajo positivo para mover la carga de prueba de A hacia B.
sobre la carga de prueba, tal como se ve en la figura. Para evitar que la carga acelere, debe aplicarse una fuerza
que sea exactamente igual a
para todas las posiciones del cuerpo de prueba.
Si el agente externo hace que el cuerpo de prueba se mueva siguiendo un corrimiento
a lo largo de la trayectoria de A a B, el elemento de trabajo desarrollado por el agente externo es
. Para obtener el trabajo total
hecho por el agente externo al mover la carga de A a B, se suman las contribuciones al trabajo de todos los segmentos infinitesimales en que se ha dividido la trayectoria. Así se obtiene:

Como
, al sustituir en esta expresión, se obtiene que

Si se toma el punto A infinitamente alejado, y si el potencial
al infinito toma el valor de cero, esta ecuación da el potencial en el punto B, o bien, eliminando el subíndice B,

Estas dos ecuaciones permiten calcular la diferencia de potencial entre dos puntos cualesquiera si se conoce
.
El potencial eléctrico sólo se puede definir para un campo estático producido por cargas que ocupan una región finita del espacio. Para cargas en movimiento debe recurrirse a los potenciales de Liénard-Wiechert para representar un campo electromagnético que además incorpore el efecto de retardo, ya que las perturbaciones del campo eléctrico no se pueden propagar más rápido que la velocidad de la luz. Si se considera que las cargas están fuera de dicho campo, la carga no cuenta con energía y el potencial eléctrico equivale al trabajo necesario para llevar la carga desde el exterior del campo hasta el punto considerado. La unidad del sistema internacional es el voltio(V). Todos los puntos de un campo eléctrico que tienen el mismo potencial forman una superficie equipotencial.
Trabajo eléctrico y energía potencial eléctrica
Considérese una carga puntual


(1)Esta fuerza realizará un trabajo para trasladar la carga de un punto A a otro B, de tal forma que para producir un pequeño desplazamiento


(2)Teniendo en cuenta la expresión ( ):
(3)Por lo tanto, integrando obtenemos que el trabajo total realizado por el campo eléctrico será:
(4)En un caso concreto con un campo eléctrico definido: Sea una carga puntual





(5)Para calcular el trabajo total, se integra entre la posición inicial A, distante




(6)De la expresión (


(7)El trabajo realizado por la fuerza eléctrica para desplazar una partícula entre A y B será:
(8)
Por convención, el nivel cero de energía potencial se suele establecer en el infinito, es decir, si y sólo si

Campo eléctrico uniforme
Sean A y B dos puntos situados en un campo eléctrico uniforme, estando A a una distancia d de B en la dirección del campo, tal como muestra la figura.
La fuerza eléctrica sobre la carga será qE y apunta hacia abajo. Para mover la carga en la forma descrita arriba, se debe contrarrestar esa fuerza aplicando una fuerza externa F de la misma magnitud pero dirigida hacia arriba. El trabajo




El punto B tiene un potencial más elevado que el A. Esto es razonable porque un agente exterior tendría que hacer trabajo positivo para mover la carga de prueba de A hacia B.
Campo eléctrico no uniforme
En el caso más general de un campo eléctrico no uniforme, este ejerce una fuerza


Si el agente externo hace que el cuerpo de prueba se mueva siguiendo un corrimiento









No hay comentarios:
Publicar un comentario